Analysis of the MRP4 drug resistance profile in transfected NIH3T3 cells.

نویسندگان

  • K Lee
  • A J Klein-Szanto
  • G D Kruh
چکیده

BACKGROUND Multidrug resistance-associated protein (MRP) 1 and canalicular multispecific organic anion transporter (cMOAT or MRP2) are adenosine triphosphate-binding cassette transporters that confer resistance to anticancer agents. In addition to these two transporters, there are at least four other human MRP subfamily members (MRP3 through MRP6). We and others reported previously that MRP3 is capable of conferring resistance to certain anticancer agents. In this study, we investigated whether MRP4 (MOAT-B), whose transcript accumulates to the highest levels in prostate tissue, has the capacity to confer drug resistance. METHODS MRP4-transfected NIH3T3 cells were generated, and their drug sensitivity was analyzed. The subcellular localization of MRP4 was assessed by immunohistochemical analysis in transfected cells and in prostate tissue. Statistical tests were two-sided. RESULTS MRP4 was detected as a 170-kd protein that was localized in the plasma membrane and cytoplasm of transfected cells. The MRP4 transfectants displayed 5.5-fold increased resistance to methotrexate in short-term drug-exposure assays (P=.022) and exhibited decreased cellular accumulation of this agent at 4 hours (P=.006) and 24 hours (P<.001). In continuous-exposure assays, however, the MRP4 transfectants did not display increased resistance for either methotrexate or natural product cytotoxic agents (anthracyclines, etoposide, vinca alkaloids, and paclitaxel [Taxol]). However, the transfectants did show increased resistance (2.3-fold) for the anti-acquired immunodeficiency syndrome nucleoside analogue 9-(2-phosphonylmethoxyethyl)adenine (PMEA) (P=.022) in continuous-exposure assays. Consistent with MRP4's plasma membrane localization in transfected cells, analysis of prostate tissue showed that MRP4 protein was localized primarily in the basolateral plasma membranes of tubuloacinar cells. CONCLUSIONS These results indicate that MRP4 confers resistance to short-term methotrexate and continuous PMEA treatment. Given its structure, drug resistance profile and subcellular localization, MRP4 probably functions as an amphipathic anion efflux pump whose substrate range includes glutamate and phosphate conjugates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the nucleoside analogs cytarabine and troxacitabine, but not gemcitabine

UNLABELLED We aimed to determine whether the multidrug-resistance-proteins MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the antimetabolites cytarabine (Ara-C), gemcitabine (GEM), and the L-nucleoside analog troxacitabine. For this purpose we used HEK293 and the transfected HEK/MRP4 (59-fold increased MRP4) or HEK/MRP5i (991-fold increased MRP5) as model systems and tested the cells for dr...

متن کامل

Aspirin extrusion from human platelets through multidrug resistance protein-4-mediated transport: evidence of a reduced drug action in patients after coronary artery bypass grafting.

OBJECTIVES In this study we investigate: 1) the role of multidrug resistance protein-4 (MRP4), an organic anion unidirectional transporter, in modulating aspirin action on human platelet cyclooxygenase (COX)-1; and 2) whether the impairment of aspirin-COX-1 interaction, found in coronary artery bypass grafting (CABG) patients, could be dependent on MRP4-mediated transport. BACKGROUND Platelet...

متن کامل

Multidrug Resistance Protein-4 Influences Aspirin Toxicity in Human Cell Line

Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4) overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα). In the ...

متن کامل

The Effect of Silica Coating on the Drug Release Profile and Biocompatibility of Nano-MOF-5

The purpose of this study was the surface modification of nano MOF-5 (NMOF-5) or IRMOF-1 (Zn4O(C8H4O4)3) in order to prevent its rapid degradation in the phosphate-buffered saline (PBS), along with the simultaneous increase in its biocompatibility. The NMOF-5 sample was synthesized under the ultrasound irradiation and then it was loaded wit...

متن کامل

Construction of triple-transfected cells [organic anion-transporting polypeptide (OATP) 1B1/multidrug resistance-associated protein (MRP) 2/MRP3 and OATP1B1/MRP2/MRP4] for analysis of the sinusoidal function of MRP3 and MRP4.

Multidrug resistance-associated protein (MRP) 3/ABCC3 and MRP4/ABCC4 are ATP-binding cassette (ABC) transporters expressed in the sinusoidal membrane of hepatocytes. The purpose of the present study was to establish organic anion-transporting polypeptide (OATP) 1B1/MRP2/MRP3 and OATP1B1/MRP2/MRP4 triple transfectants as in vitro model of the hepatobiliary transport of anionic drugs. To find in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 92 23  شماره 

صفحات  -

تاریخ انتشار 2000